Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0301133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547097

RESUMO

PURPOSE: Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease (NAFLD), which has a high risk of cirrhosis, liver failure, and hepatocellular carcinoma. Piperine (Pip) is an extract of plants with powerful anti-inflammatory effects, however, the function of Pip in NASH remains elusive. Here, we aim to explore the role of Pip in NASH and to find the possible mechanisms. METHODS: Methionine and choline-deficient (MCD) diets were used to induce steatohepatitis, methionine- and choline-sufficient (MCS) diets were used as the control. After Pip treatment, H&E staining, Oil Red O staining, hepatic triglyceride (TG) content and F4/80 expression were performed to analysis liver steatosis and inflammation; Masson's staining, COL1A1 and α-SMA were detected liver fibrosis. Lipopolysaccharide (LPS) -treated AML12 cells were used to as the cell model to induce pyroptosis. Then, pyroptosis-related proteins, IL-1ß and LDH release were detected in vivo and in vitro. Finally, NF-κB inhibitor, BAY11-7082, was used to further demonstrate the mechanism of Pip in NASH. RESULTS: The study found that Pip alleviated liver steatosis, inflammation, hepatocyte injury, and fibrosis in mice fed with MCD diets. Moreover, the pyroptosis markers (NLRP3, ASC, caspase-1 p20, and GSDMD), IL-1ß and LDH release were decreased by Pip treatment. NF-κB activation was suppressed by Pip treatment and pyroptosis-related proteins were down regulated by BAY11-7082. CONCLUSION: Pip ameliorates NASH progression, and the therapeutical effect was associated with inhibition of hepatocyte pyroptosis induced by NF-κB.


Assuntos
Alcaloides , Benzodioxóis , Nitrilas , Hepatopatia Gordurosa não Alcoólica , Piperidinas , Alcamidas Poli-Insaturadas , Sulfonas , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/patologia , NF-kappa B/metabolismo , Piroptose , Fígado/metabolismo , Cirrose Hepática/patologia , Fibrose , Inflamação/patologia , Colina/metabolismo , Hepatócitos/metabolismo , Metionina/metabolismo , Camundongos Endogâmicos C57BL
2.
BMC Gastroenterol ; 24(1): 106, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486162

RESUMO

To investigate the effect of Oncometabolite succinate on colorectal cancer migration and invasion and to initially explore the underlying mechanism.Succinate acid detection kit detected the succinate content in tissues. The growth of colorectal cancer cells was measured by cck-8 assay, wound-healing migration assay and transwell migration and invasion assays, and then explored the level of epithelial-mesenchymal transition (EMT) and STAT3/ p-STAT3 expression by western blot analysis and quantitative real-time PCR for mRNA expression. We found that succinate levels were significantly higher in carcinoma tissues than paracancerous tissues. After succinate treatment, the colorectal cancer cell lines SW480 and HCT116 had enhanced migration and invasion, the expression of biomarkers of EMT was promoted, and significantly increased phosphorylation of STAT3. In vivo experiments also showed that succinate can increase p-STAT3 expression, promote the EMT process, and promote the distant metastasis of colorectal cancer in mice.Succinate promotes EMT through the activation of the transcription factor STAT3, thus promoting the migration and invasion of colorectal cancer.


Assuntos
Neoplasias Colorretais , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Ácido Succínico , Fosforilação
3.
Plant J ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308390

RESUMO

Salicylic acid (SA) is known to enhance salt tolerance in plants. However, the mechanism of SA-mediated response to high salinity in halophyte remains unclear. Using electrophysiological and molecular biological methods, we investigated the role of SA in response to high salinity in mangrove species, Kandelia obovata, a typical halophyte. Exposure of K. obovata roots to high salinity resulted in a rapid increase in endogenous SA produced by phenylalanine ammonia lyase pathway. The application of exogenous SA improved the salt tolerance of K. obovata, which depended on the NADPH oxidase-mediated H2 O2 . Exogenous SA and H2 O2 increased Na+ efflux and reduced K+ loss by regulating the transcription levels of Na+ and K+ transport-related genes, thus reducing the Na+ /K+ ratio in the salt-treated K. obovata roots. In addition, exogenous SA-enhanced antioxidant enzyme activity and its transcripts, and the expressions of four genes related to AsA-GSH cycle as well, then alleviated oxidative damages in the salt-treated K. obovata roots. However, the above effects of SA could be reversed by diphenyleneiodonium chloride (the NADPH oxidase inhibitor) and paclobutrazol (a SA biosynthesis inhibitor). Collectively, our results demonstrated that SA-induced salt tolerance of K. obovata depends on NADPH oxidase-generated H2 O2 that affects Na+ /K+ and redox homeostasis in response to high salinity.

4.
J Exp Bot ; 75(8): 2266-2279, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38190348

RESUMO

In plants, C-to-U RNA editing mainly occurs in plastid and mitochondrial transcripts, which contributes to a complex transcriptional regulatory network. More evidence reveals that RNA editing plays critical roles in plant growth and development. However, accurate detection of RNA editing sites using transcriptome sequencing data alone is still challenging. In the present study, we develop PlantC2U, which is a convolutional neural network, to predict plastid C-to-U RNA editing based on the genomic sequence. PlantC2U achieves >95% sensitivity and 99% specificity, which outperforms the PREPACT tool, random forests, and support vector machines. PlantC2U not only further checks RNA editing sites from transcriptome data to reduce possible false positives, but also assesses the effect of different mutations on C-to-U RNA editing based on the flanking sequences. Moreover, we found the patterns of tissue-specific RNA editing in the mangrove plant Kandelia obovata, and observed reduced C-to-U RNA editing rates in the cold stress response of K. obovata, suggesting their potential regulatory roles in plant stress adaptation. In addition, we present RNAeditDB, available online at https://jasonxu.shinyapps.io/RNAeditDB/. Together, PlantC2U and RNAeditDB will help researchers explore the RNA editing events in plants and thus will be of broad utility for the plant research community.


Assuntos
Aprendizado Profundo , Edição de RNA , Edição de RNA/genética , Plantas/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Transcriptoma , RNA de Plantas/genética , RNA de Plantas/metabolismo
5.
Plant Cell Environ ; 47(2): 511-526, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37869766

RESUMO

Brassinosteroid (BR) has been shown to modulate plant tolerance to various stresses. S-nitrosoglutathione reductase (GSNOR) is involved in the plant response to environment stress by fine-turning the level of nitric oxide (NO). However, whether GSNOR is involved in BR-regulated Na+ /K+ homeostasis to improve the salt tolerance in halophyte is unknown. Here, we firstly reported that high salinity increases the expression of BR-biosynthesis genes and the endogenous levels of BR in mangrove Kandelia obovata. Then, salt-induced BR triggers the activities and gene expressions of GSNOR and antioxidant enzymes, thereafter decrease the levels of malondialdehyde, hydrogen peroxide. Subsequently, BR-mediated GSNOR negatively regulates NO contributions to the reduction of reactive oxygen species generation and induction of the gene expression related to Na+ and K+ transport, leading to the decrease of Na+ /K+ ratio in the roots of K. obovata. Finally, the applications of exogenous BR, NO scavenger, BR biosynthetic inhibitor and GSNOR inhibitor further confirm the function of BR. Taken together, our result provides insight into the mechanism of BR in the response of mangrove K. obovata to high salinity via GSNOR and NO signaling pathway by reducing oxidative damage and modulating Na+ /K+ homeostasis.


Assuntos
Óxido Nítrico , Rhizophoraceae , Óxido Nítrico/metabolismo , Oxirredutases/metabolismo , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Rhizophoraceae/genética , Rhizophoraceae/metabolismo , Tolerância ao Sal , Transdução de Sinais
6.
Plant Cell Environ ; 47(3): 832-853, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37984066

RESUMO

Aquaporins (AQPs) regulate the transport of water and other substrates, aiding plants in adapting to stressful environments. However, the knowledge of AQPs in salt-secreting and viviparous Avicennia marina is limited. In this study, 46 AmAQPs were identified in A. marina genome, and their subcellular localisation and function in transporting H2 O2 and boron were assessed through bioinformatics analysis and yeast transformation. Through analysing their expression patterns via RNAseq and real-time quantitative polymerase chain reaction, we found that most AmAQPs were downregulated in response to salt and tidal flooding. AmPIP (1;1, 1;7, 2;8, 2;9) and AmTIP (1;5, 1;6) as salt-tolerant candidate genes may contribute to salt secretion together with Na+ /H+ antiporters. AmPIP2;1 and AmTIP1;5 were upregulated during tidal flooding and may be regulated by anaerobic-responsive element and ethylene-responsive element cis-elements, aiding in adaptation to tidal inundation. Additionally, we found that the loss of the seed desiccation and dormancy-related TIP3 gene, and the loss of the seed dormancy regulator DOG1 gene, or DOG1 protein lack heme-binding capacity, may be genetic factors contributing to vivipary. Our findings shed light on the role of AQPs in A. marina adaptation to intertidal environments and their relevance to salt secretion and vivipary.


Assuntos
Aquaporinas , Avicennia , Avicennia/metabolismo , Ecossistema , Água/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo
7.
ACS Omega ; 8(48): 46261-46266, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075769

RESUMO

Alkalinity is crucial in environmental control of ecosystems, wastewater and drinking water treatment, and industrial process control. In this work, we reported a new equation for calculating alkalinity based on the definition of buffer capacity in acid-base buffer solutions and the quantitative relationship between the buffer capacity and pH changes. A "mix and measure" method was developed using this new equation, involving mixing a solution with unknown alkalinity and a standard solution in a specific volume ratio, followed by measuring the pH after mixing. The alkalinity of the solution can be calculated using the newly developed equation. The "mix and measure" method is much more efficient than traditional titration methods for determination of alkalinity because it is restricted by the titration stoichiometric point. Additionally, we demonstrated the rapid determination of the alkalinity for a series of solutions using a portable detection system. This system exhibited precision and accuracy comparable to those of traditional titration methods. The portable system offers great potential for the on-site and real-time determination of alkalinity for industrial control and environmental monitoring purposes.

8.
RSC Med Chem ; 14(10): 2048-2057, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37859722

RESUMO

Of the various WD40 family proteins, WDR5 is a particularly important multifunctional adaptor protein that can bind to several protein complexes to regulate gene activation, so it was considered as a promising epigenetic target in anti-cancer drug development. Despite many inhibitors having been discovered directing against the arginine-binding cavity in WDR5 called the WIN site, the side hydrophobic cavity called the WBM site receives rather scant attention. Herein, we aim to obtain novel WBM-targeted peptidic inhibitors with high potency and selectivity. We employed two improved biopanning approaches with a disulfide-constrained cyclic peptide phage library containing 7 randomized residues and identified several peptides with micromole binding activity by docking and binding assay. To further optimize the stability and activity, 9 thiol-reactive chemical linkers were utilized in the cyclization of the candidate peptide DH226027, which had good binding affinity. This study provides an effective method to discover potent peptides targeting protein-protein interactions and highlights a broader perspective of peptide-mimic drugs.

9.
Diabetes ; 72(11): 1692-1706, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683051

RESUMO

Impaired wound healing and ulcer complications are major causes of morbidity in patients with diabetes. Impaired wound healing is associated with increased inflammation and poor angiogenesis in diabetes patients. Here, we demonstrate that topical administration of a secreted recombinant protein (Meteorin-like [Metrnl]) accelerates wound epithelialization and angiogenesis in mice. We observed a significant increase in Metrnl expression during physiological wound healing; however, its expression remained low during diabetic wound healing. Functionally, the recombinant protein Metrnl significantly accelerated wound closure in normal and diabetic mice models including db/db, high-fat diet/streptozotocin (HFD/STZ), and STZ mice. Mechanistically, keratinocytes secrete quantities of Metrnl to promote angiogenesis; increase endothelial cell proliferation, migration, and tube formation; and enhance macrophage polarization to the M2 type. Meanwhile, M2 macrophages secrete Metrnl to further stimulate angiogenesis. Moreover, the keratinocyte- and macrophage-produced cytokine Metrnl drives postinjury angiogenesis and reepithelialization through activation of AKT phosphorylation (S473) in a KIT receptor tyrosine kinase (c-Kit)-dependent manner. In conclusion, our study suggests that Metrnl has a biological effect in accelerating wound closure through c-Kit-dependent angiogenesis and epithelialization.

10.
J Hazard Mater ; 459: 132321, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37597395

RESUMO

Mangrove Avicennia marina has the importantly potential for cadmium (Cd) pollution remediation in coastal wetlands. Unfortunately, the molecular mechanisms and transporter members for Cd uptake by the roots of A. marina are not well documented. In this study, photosynthetic and phenotypic analysis indicated that A. marina is particularly tolerant to Cd. The content and flux analysis indicated that Cd is mainly retained in the roots, with greater Cd influx in fine roots than that in coarse roots, and higher Cd influx in the root meristem zone as well. Using transcriptomic analysis, a total of 5238 differentially expressed genes were identified between the Cd treatment and control group. Moreover, we found that 54 genes were responsible for inorganic ion transport. Among these genes, AmHMA2, AmIRT1, and AmPCR2 were localized in the plasma membrane and AmZIP1 was localized in both plasma membrane and cytoplasm. All above gene encoding transporters showed significant Cd transport activities using function assay in yeast cells. In addition, the overexpression of AmZIP1 or AmPCR2 in Arabidopsis improved the Cd tolerance of transgenic plants. This is particularly significant as it provides insight into the molecular mechanism for Cd uptake by the roots of mangrove plants and a theoretical basis for coastal wetland phytoremediation.


Assuntos
Arabidopsis , Avicennia , Fabaceae , Avicennia/genética , Cádmio/toxicidade , Proteínas de Membrana Transportadoras , Transporte Biológico , Áreas Alagadas
11.
Plant Cell Rep ; 42(9): 1473-1485, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37516984

RESUMO

KEY MESSAGE: This study provided important insights into the genetic architecture of variations in A. thaliana leaf ionome in a cell-type-specific manner. The functional interpretation of traits associated variants by expression quantitative trait loci (eQTL) analysis is usually performed in bulk tissue samples. While the regulation of gene expression is context-dependent, such as cell-type-specific manner. In this study, we estimated cell-type abundances from 728 bulk tissue samples using single-cell RNA-sequencing dataset, and performed cis-eQTL mapping to identify cell-type-interaction eQTL (cis-eQTLs(ci)) in A. thaliana. Also, we performed Genome-wide association studies (GWAS) analyses for 999 accessions to identify the genetic basis of variations in A. thaliana leaf ionome. As a result, a total of 5,664 unique eQTL genes and 15,038 unique cis-eQTLs(ci) were significant. The majority (62.83%) of cis-eQTLs(ci) were cell-type-specific eQTLs. Using colocalization, we uncovered one interested gene AT2G25590 in Phloem cell, encoding a kind of plant Tudor-like protein with possible chromatin-associated functions, which colocalized with the most significant cis-eQTL(ci) of a Mo-related locus (Chr2:10,908,806:A:C; P = 3.27 × 10-27). Furthermore, we prioritized eight target genes associated with AT2G25590, which were previously reported in regulating the concentration of Mo element in A. thaliana. This study revealed the genetic regulation of ionomic variations and provided a foundation for further studies on molecular mechanisms of genetic variants controlling the A. thaliana ionome.


Assuntos
Arabidopsis , Locos de Características Quantitativas , Arabidopsis/genética , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética
12.
J Immunol Res ; 2023: 6613064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415625

RESUMO

NOD-like receptor family pyrin domain containing 6 (NLRP6) is a new pattern recognition receptor in the mammalian innate immune system. Both the liver and the gut exhibit substantial levels of cytoplasmic expression. It can speed up cell response to endogenous danger signals or exogenous pathogen infection. NLRP6 can function in various ways as an inflammasome or a noninflammasome. The understanding of NLRP6 is steadily increasing thanks to ongoing investigations, but due to discrepancies in how those studies have described their link with tumors, the significance of NLRP6 in the emergence of cancer is still debatable as of this writing. This article will use the structure and function of NLRP6 as the pivotal point and thoroughly explain the present interactions between NLRP6 and tumors and any possible clinical benefits.


Assuntos
Inflamassomos , Neoplasias , Animais , Humanos , Inflamassomos/metabolismo , Mamíferos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122903, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37290241

RESUMO

The iron ion in industrial circulating cooling water is an important indicator for early warning of equipment corrosion and control level. It is interesting to construct an upconversion luminescence iron ion nanoprobe with a common inorganic phosphate water treatment agent. Herein, inorganic phosphate sodium hexametaphosphate (SHMP) was used to regulate the morphology and functionalization of NaYF4:Yb3+, Er3+ upconversion luminescent nanoprobe (UCNPs) and applied to fluorometric detection of trace Fe(III) in water based on the fluorescence quenching which is caused by the selective coordination between hexametaphosphate on the surface of UCNPs and Fe(III). The structure, morphology, and luminous intensity of UCNPs were regulated by disodium hydrogen phosphate (ADSP), sodium tripolyphosphate (STPP) and sodium hexametaphosphate(SHMP). The UCNPs functionalized with SHMP has high sensitivity and selectivity for Fe(III) detection. The linear range and detection limit are 1.0-50 µM and 0.2 µM, respectively. The method has satisfactory results for the detection of trace Fe(III) in industrial circulating cooling water.


Assuntos
Ferro , Nanopartículas , Luminescência , Corantes , Fluorometria , Nanopartículas/química
14.
J Hazard Mater ; 448: 130880, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736216

RESUMO

Cadmium (Cd) contamination is becoming a widespread environmental problem. However, the differential responsive mechanisms of Cd hyperaccumulator Solanum nigrum to low or high dose of Cd are not well documented. In this study, phenotypic and physiological analysis firstly suggested that the seedlings of S. nigrum showed slight leaf chlorosis symptoms under 25 µM Cd and severe inhibition on growth and photosynthesis under 100 µM Cd. Further proteomic analysis identified 105 differentially expressed proteins (DEPs) in the Cd-treated leaves. Under low dose of Cd stress, 47 DEPs are mainly involved in primary metabolic processes, while under high dose of Cd stress, 92 DEPs are mainly involved in photosynthesis, energy metabolism, production of phytochelatin and reactive oxygen species (ROS). Protein-protein interaction (PPI) network analysis of DEPs support above differential responses in the leaves of S. nigrum to low and high dose of Cd treatments. This work provides the differential responsive mechanisms in S. nigrum to low and high dose of Cd, and the theoretical foundation for the application of hyperaccumulating plants in the phytoremediation of Cd-contaminated soils.


Assuntos
Poluentes do Solo , Solanum nigrum , Solanum nigrum/metabolismo , Cádmio/metabolismo , Proteômica , Poluentes do Solo/metabolismo , Raízes de Plantas/metabolismo , Biodegradação Ambiental , Solo
15.
Genes (Basel) ; 14(2)2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36833202

RESUMO

Chrysanthemum morifolium Ramat. 'Huaihuang' is a traditional Chinese medicinal plant. However, a black spot disease caused by Alternaria sp., a typical necrotrophic fungus, has a serious damaging influence on the field growth, yield, and quality of the plant. 'Huaiju 2#' being bred from 'Huaihuang', shows resistance to Alternaria sp. bHLH transcription factor has been widely studied because of their functions in growth development, signal transduction, and abiotic stress. However, the function of bHLH in biotic stress has rarely been studied. To characterize the resistance genes, the CmbHLH family was surveyed in 'Huaiju 2#'. On the basis of the transcriptome database of 'Huaiju 2#' after Alternaria sp. inoculation, with the aid of the Chrysanthemum genome database, 71 CmbHLH genes were identified and divided into 17 subfamilies. Most (64.8%) of the CmbHLH proteins were rich in negatively charged amino acids. CmbHLH proteins are generally hydrophilic proteins with a high aliphatic amino acid content. Among the 71 CmbHLH proteins, five CmbHLHs were significantly upregulated by Alternaria sp. infection, and the expression of CmbHLH18 was the most significant. Furthermore, heterologous overexpression of CmbHLH18 could improve the resistance of Arabidopsis thaliana to necrotrophic fungus Alternaria brassicicola by enhancing callose deposition, preventing spores from entering leaves, reducing ROS accumulation, increasing the activities of antioxidant enzymes and defense enzymes, and promoting their gene expression levels. These results indicate that the five CmbHLHs, especially CmbHLH18, may be considered candidate genes for resistance to necrotrophic fungus. These findings not only increase our understanding of the role CmbHLHs play in biotic stress but also provide a basis by using CmbHLHs to breed a new variety of Chrysanthemum with high resistance to necrotrophic fungus.


Assuntos
Arabidopsis , Chrysanthemum , Alternaria/genética , Fatores de Transcrição/genética , Melhoramento Vegetal , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
16.
Cell Death Dis ; 14(2): 166, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849424

RESUMO

Impaired protein N-glycosylation leads to the endoplasmic reticulum (ER) stress, which triggers adaptive survival or maladaptive apoptosis in renal tubules in diabetic kidney disease (DKD). Therapeutic strategies targeting ER stress are promising for the treatment of DKD. Here, we report a previously unappreciated role played by ENTPD5 in alleviating renal injury by mediating ER stress. We found that ENTPD5 was highly expressed in normal renal tubules; however, ENTPD5 was dynamically expressed in the kidney and closely related to pathological DKD progression in both human patients and mouse models. Overexpression of ENTPD5 relieved ER stress in renal tubular cells, leading to compensatory cell proliferation that resulted in hypertrophy, while ENTPD5 knockdown aggravated ER stress to induce cell apoptosis, leading to renal tubular atrophy and interstitial fibrosis. Mechanistically, ENTPD5-regulated N-glycosylation of proteins in the ER to promote cell proliferation in the early stage of DKD, and continuous hyperglycemia activated the hexosamine biosynthesis pathway (HBP) to increase the level of UDP-GlcNAc, which driving a feedback mechanism that inhibited transcription factor SP1 activity to downregulate ENTPD5 expression in the late stage of DKD. This study was the first to demonstrate that ENTPD5 regulated renal tubule cell numbers through adaptive proliferation or apoptosis in the kidney by modulating the protein N-glycosylation rate in the ER, suggesting that ENTPD5 drives cell fate in response to metabolic stress and is a potential therapeutic target for renal diseases.


Assuntos
Estresse do Retículo Endoplasmático , Túbulos Renais , Rim , Animais , Humanos , Camundongos , Glicosilação , Proteínas Oncogênicas , Pirofosfatases
17.
Diabetes ; 72(5): 611-626, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36812572

RESUMO

Ectopic lipid accumulation in renal tubules is closely related to the pathogenesis of diabetic kidney disease (DKD), and mitochondrial dysfunction is thought to play a key role in lipid accumulation. Therefore, maintaining mitochondrial homeostasis holds considerable promise as a therapeutic strategy for the treatment of DKD. Here, we report that the Meteorin-like (Metrnl) gene product mediates lipid accumulation in the kidney and has therapeutic potential for DKD. We confirmed the reduced expression of Metrnl in renal tubules, which was inversely correlated with DKD pathological changes in human patients and mouse models. Functionally, pharmacological administration of recombinant Metrnl (rMetrnl) or Metrnl overexpression could alleviate lipid accumulation and inhibit kidney failure. In vitro, rMetrnl or Metrnl overexpression attenuated palmitic acid-induced mitochondrial dysfunction and lipid accumulation in renal tubules accompanied by maintained mitochondrial homeostasis and enhanced lipid consumption. Conversely, shRNA-mediated Metrnl knockdown diminished the protective effect on the kidney. Mechanistically, these beneficial effects of Metrnl were mediated by the Sirt3-AMPK signaling axis to maintain mitochondrial homeostasis and through Sirt3-uncoupling protein-1 to promote thermogenesis, consequently alleviating lipid accumulation. In conclusion, our study demonstrates that Metrnl regulated lipid metabolism in the kidney by modulating mitochondrial function and is a stress-responsive regulator of kidney pathophysiology, which sheds light on novel strategies for treating DKD and associated kidney diseases. ARTICLE HIGHLIGHTS: Metrnl is expressed in renal tubules and is reduced under diabetic conditions. The concentration of Metrnl in the kidney is correlated with lipid accumulation and serum creatinine. Metrnl-specific overexpression in the kidney or recombinant Metrnl administration alleviates renal injuries in diabetic mice. Metrnl regulates renal tubules lipid metabolism through Sirt3-AMPK/UCP1 signaling axis-mediated mitochondrial homeostasis.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Sirtuína 3 , Humanos , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Sirtuína 3/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Mitocôndrias/metabolismo , Lipídeos , Homeostase
18.
Plant Cell Environ ; 46(5): 1521-1539, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36658747

RESUMO

Hydrogen sulfide (H2 S) is considered to mediate plant growth and development. However, whether H2 S regulates the adaptation of mangrove plant to intertidal flooding habitats is not well understood. In this study, sodium hydrosulfide (NaHS) was used as an H2 S donor to investigate the effect of H2 S on the responses of mangrove plant Avicennia marina to waterlogging. The results showed that 24-h waterlogging increased reactive oxygen species (ROS) and cell death in roots. Excessive mitochondrial ROS accumulation is highly oxidative and leads to mitochondrial structural and functional damage. However, the application of NaHS counteracted the oxidative damage caused by waterlogging. The mitochondrial ROS production was reduced by H2 S through increasing the expressions of the alternative oxidase genes and increasing the proportion of alternative respiratory pathway in the total mitochondrial respiration. Secondly, H2 S enhanced the capacity of the antioxidant system. Meanwhile, H2 S induced Ca2+ influx and activated the expression of intracellular Ca2+ -sensing-related genes. In addition, the alleviating effect of H2 S on waterlogging can be reversed by Ca2+ chelator and Ca2+ channel blockers. In conclusion, this study provides the first evidence to explain the role of H2 S in waterlogging adaptation in mangrove plants from the mitochondrial aspect.


Assuntos
Avicennia , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Cálcio/metabolismo , Avicennia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo
19.
Plant Mol Biol ; 111(4-5): 393-413, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36645624

RESUMO

NAC (NAM, ATAF1/2, CUC2) transcription factors (TFs) constitute a plant-specific gene family. It is reported that NAC TFs play important roles in plant growth and developmental processes and in response to biotic/abiotic stresses. Nevertheless, little information is known about the functional and evolutionary characteristics of NAC TFs in mangrove plants, a group of species adapting coastal intertidal habitats. Thus, we conducted a comprehensive investigation for NAC TFs in Avicennia marina, one pioneer species of mangrove plants. We totally identified 142 NAC TFs from the genome of A. marina. Combined with NAC proteins having been functionally characterized in other organisms, we built a phylogenetic tree to infer the function of NAC TFs in A. marina. Gene structure and motif sequence analyses suggest the sequence conservation and transcription regulatory regions-mediated functional diversity. Whole-genome duplication serves as the driver force to the evolution of NAC gene family. Moreover, two pairs of NAC genes were identified as positively selected genes of which AmNAC010/040 may be imposed on less constraint toward neofunctionalization. Quite a few stress/hormone-related responsive elements were found in promoter regions indicating potential response to various external factors. Transcriptome data revealed some NAC TFs were involved in pneumatophore and leaf salt gland development and response to salt, flooding and Cd stresses. Gene co-expression analysis found a few NAC TFs participates in the special biological processes concerned with adaptation to intertidal environment. In summary, this study provides detailed functional and evolutionary information about NAC gene family in mangrove plant A. marina and new perspective for adaptation to intertidal habitats.


Assuntos
Avicennia , Avicennia/química , Avicennia/genética , Avicennia/metabolismo , Filogenia , Fatores de Transcrição/metabolismo , Genes de Plantas , Ecossistema
20.
Chemosphere ; 307(Pt 3): 136031, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35981624

RESUMO

Cadmium (Cd) is a toxic heavy metal affecting the normal growth of plants. Nitrate (NO3-) and ammonium (NH4+) are the primary forms of inorganic nitrogen (N) absorbed by plants. However, the mechanism of N absorption and regulation under Cd stress remains unclear. This study found that: (1) Cd treatment affected the biomass, root length, and Cd2+ flux in Solanum nigrum seedling roots. Specifically, 50 µM Cd significantly inhibited NO3- influx while increased NH4+ influx compared with 0 and 5 µM Cd treatments measured by non-invasive micro-test technology. (2) qRT-PCR analysis showed that 50 µM Cd inhibited the expressions of nitrate transporter genes, SnNRT2;4 and SnNRT2;4-like, increased the expressions of ammonium transporter genes, SnAMT1;2 and SnAMT1;3, in the roots. (3) Under NH4+ supply, 50 µM Cd significantly induced the expressions of the aquaporin genes, SnPIP1;5, SnPIP2;7, and SnTIP2;1. Our results showed that 50 µM Cd stress promoted NH4+ absorption by up-regulating the gene expressions of NH4+ transporter and aquaporins, suggesting that high Cd stress can affect the preference of N nutrition in S. nigrum.


Assuntos
Compostos de Amônio , Aquaporinas , Poluentes do Solo , Solanum nigrum , Compostos de Amônio/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Biodegradação Ambiental , Cádmio/análise , Proteínas de Membrana Transportadoras/metabolismo , Nitratos/análise , Nitrogênio/análise , Raízes de Plantas/metabolismo , Poluentes do Solo/análise , Solanum nigrum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...